Math 261
 Fall 2023

Lecture 24

Feb 19-8:47 AM

Class QZ 11
find eqn of the tan. line to the graph of $f(x)=\frac{1}{x^{4}}$ at $x=2$. $f(2)=\frac{1}{2^{4}}=\frac{1}{16}$

$$
\left(a, \frac{1}{16}\right)
$$

$$
m=f^{\prime}(2)=\frac{-4}{2^{5}}=\frac{-4}{32}=\frac{-1}{8}
$$

$$
y-\frac{1}{16}=\frac{-1}{8}(x-2)
$$

$$
y=\frac{-1}{8} x+\frac{2}{8}+\frac{1}{16} \quad y=\frac{-1}{8} x+\frac{5}{16}
$$

More on chain Rule:
If $y=f(u)$ and $u=g(x)$, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

ex: $y=u^{5}$ and $u=\frac{1}{5} x^{4}-\frac{1}{10} x^{2}$
find $\frac{d y}{d x}=5 u^{4} \cdot\left(\frac{4}{5} x^{3}-\frac{2}{10} x\right)$

$$
\begin{aligned}
& =5\left(\frac{1}{5} x^{4}-\frac{1}{10} x^{2}\right)^{40} \cdot\left[\frac{4}{5} x^{3}-\frac{1}{5} x\right] \\
& =\left(\frac{1}{5} x^{4}-\frac{1}{10} x^{2}\right)^{4} \cdot\left(4 x^{3}-x\right)
\end{aligned}
$$

Oct 10-10:34 AM

$$
\begin{aligned}
y & =\sin ^{\sqrt{3}} \quad u=\sqrt{\sqrt{x}}-2 \\
y^{\prime} & =\frac{d y}{d u} \cdot \frac{d u}{d x} \\
& =\cos u^{3} \cdot 3 u^{2} \cdot \frac{1}{2 \sqrt{x}} \\
y^{\prime} & =\cos (\sqrt{x}-2)^{3} \cdot 3(\sqrt{x}-2)^{2} \cdot \frac{1}{2 \sqrt{x}} \\
y^{\prime} & =\frac{3}{2} \cdot \frac{(\sqrt{x}-2)^{2}}{\sqrt{x}} \cdot \cos (\sqrt{x}-2)^{3}
\end{aligned}
$$

$$
\begin{aligned}
& y=\sin u^{3} \quad u=\sqrt{x}-2 \\
& y=\sin ^{\prime}(\sqrt{x}-2)^{\frac{3}{3}} \\
& y^{\prime}=\cos (\sqrt{x}-2)^{3} \cdot 3(\sqrt{x}-2)^{2} \cdot \frac{1}{2 \sqrt{x}} \\
& y=\cos ^{2}(4 x+5)=\left[\cos ^{\sqrt{x}}(4 x+5)\right]^{2} \\
& y^{\prime}=2^{\prime}[\cos (4 x+5)]^{2} \cdot-\sin (4 x+5) \cdot 4^{\jmath} \\
& y^{\prime}=-8 \sin (4 x+5) \cdot \cos (4 x+5)
\end{aligned}
$$

find eqn of the tan. line to the graph of

$$
\begin{aligned}
& f(x)=\left(x^{2}-4 x+3\right)^{5} \text { at } x=1 \text {. } \\
& f(1)=\left(1^{2}-4(1)+3\right)^{5} \\
& =0^{5}=0 \\
& y-0=0(x-1) \\
& y=0 \\
& \begin{array}{l}
f(x)=(x-4 x+3) \\
f^{\prime}(x)=5\left(x^{2}-4 x+3\right) \cdot(2 x-4)
\end{array} \\
& f^{\prime}(1)=5\left(1^{2}-4(1)+3\right)^{4} \cdot(2(1)-4)=0 \\
& \frac{d}{d x}\left[x^{2}-4 x+3\right]=\frac{d}{d x}\left[x^{2}\right]-\frac{d}{d x}[4 x]+\frac{d}{d x}[3] \\
& =2 x-4.1+0 \\
& =2 x-4
\end{aligned}
$$

find eqn of the normal line to the graph of

$$
\begin{aligned}
& f(x)=\left(\frac{x}{x-3}\right)^{3} \text { at } x=4 \text {. } \\
& f(4)=\left(\frac{4}{4-3}\right)^{3} \\
& =4^{-3}=64 \\
& =\frac{-1}{S^{\prime}(4)}=\frac{-1}{\sqrt{-144}}=\frac{1}{144} \\
& f^{\prime}(x)=3\left(\frac{x}{x-3}\right)^{2} \cdot \frac{d}{d x}\left[\frac{x}{x-3}\right] \\
& \begin{aligned}
f^{\prime}(4) & =\frac{-9(4)^{2}}{(4-3)^{4}} \\
& =\frac{-9 \cdot 16}{1}=-144
\end{aligned}=3 \\
& 3\left(\frac{x}{x-3}\right)^{2} \cdot \frac{1(x-3)-x \cdot-1}{(x-3)^{2}} \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-64=\frac{1}{144}(x-4) \Rightarrow \underbrace{y=\sqrt{y}}_{\text {slope-7nt. Form }}
\end{aligned}
$$

$$
\begin{array}{ll}
f(3)=2, & g(3)=-5 \\
f^{\prime}(3)=-1 & g^{\prime}(3)=3
\end{array}
$$

Given $\quad y=\frac{f(x)}{g(x)} \quad$ find $\left.\frac{d y}{d x}\right|_{x=3}$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{[g(x)]^{2}} \\
& \begin{aligned}
\left.\frac{d y}{d x}\right|_{x=3}=\frac{f^{\prime}(3) \cdot g(3)-f(3) \cdot g^{\prime}(3)}{[g(3)]^{2}} & =\frac{-1 \cdot(-5)-2 \cdot 3}{[-5]^{2}} \\
& =\frac{5-6}{25}=\frac{-1}{25}
\end{aligned}
\end{aligned}
$$

Find all points where graph of $y=\frac{1}{3} x^{3}-\frac{3}{2} x^{2}+2 x$ has horizontal tan. lines?

$$
y^{\prime}=0
$$

$$
\begin{aligned}
& m=0 \\
& y^{\prime}=0
\end{aligned}
$$

$$
\rightarrow y^{\prime}=\frac{1}{3} \cdot 3 x^{2}-\frac{3}{2} \cdot 2 x+2
$$

$$
\begin{gathered}
x^{2}-3 x+2=0 \\
(x-1)(x-2)=0 \\
\quad d \quad y=1
\end{gathered}
$$

Oct 10-11:08 AM
find $f^{\prime}(0)$ for $f(x)=\sqrt{x^{3}-2 x+5}$

$$
\begin{aligned}
f(x) & =\left(x^{3}-2 x+5\right)^{1 / 2} \\
f^{\prime}(x) & =\frac{1}{2}\left(x^{3}-2 x+5\right)^{\frac{1}{2}-1} \cdot\left(3 x^{2}-2\right) \\
f^{\prime}(x) & =\frac{1}{2} \cdot\left(x^{3}-2 x+5\right)^{-1 / 2} \cdot\left(3 x^{2}-2\right) \\
f^{\prime}(0) & =\frac{1}{2} \cdot\left(0^{3}-2(0)+5\right)^{-1 / 2} \cdot\left(3 \cdot 0^{2}-2\right) \\
& =\frac{1}{2} \cdot(5)^{-1 / 2} \cdot(-22)=\frac{-1}{\sqrt{5}}=-\frac{\sqrt{5}}{5}
\end{aligned}
$$

find $\frac{d y}{d x}$ (Do not simplify)
1)

$$
\begin{aligned}
& y=\sin ^{3} x=\left[\sin x^{\operatorname{Hy}}\right]^{3} \\
& y^{\prime}=3[\sin x]^{2} \cdot \cos x \cdot 1
\end{aligned}
$$

2) $y=\sin x^{3}$

$$
y^{\prime}=\cos x^{3} \cdot 3 x^{2}
$$

3) $y=\sin ^{3} x^{3}=\left[\sin x^{3}\right]^{3}$

$$
y^{\prime}=3\left[\sin x^{3}\right]^{2} \cdot \cos x^{3} \cdot 3 x^{2}
$$

find $\frac{d y}{d x}$

1) $y=\cos \left(\sin _{1}^{\sqrt{x}}\right) \quad y^{\prime}=-\sin (\sin x) \cdot \cos x \cdot 1$
2) $y=\cos ^{2}\left(\sin x^{3}\right)=\left[\cos \left(\sin x^{3}\right]^{2}\right.$

$$
y^{\prime}=2\left[\cos \left(\sin x^{3}\right)\right]^{2-1} \cdot-\sin \left(\sin x^{3}\right) \cdot \cos x^{3} \cdot 3 y^{2}
$$

If $f(x)$ is differentiable at $x=a$, then $f(x)$ is Continuous at $x=a$.

